The tdt function which I provide below should be faster
tdt <- function(DT, transpose.col, ...) {
# The transpose function is efficient, but lacks the keeping of row and colnames
new.row.names <- colnames(DT)
new.row.names <- new.row.names[!new.row.names %in% transpose.col]
new.col.names <- DT[, transpose.col, with = F]
DT <- DT[, !colnames(DT) %in% transpose.col, with = F]
DT <- transpose(DT, ...)
colnames(DT) <- unlist(new.col.names)
DT$var <- new.row.names
# change order of DT after transposing
setcolorder(DT, c("var", setdiff(names(DT), "var")))
colnames(DT)[1] <- transpose.col
return(DT)
}
library(microbenchmark); library(microbenchmarkCore)
DT <- data.table(x=1:1000, y=paste("name", 1:1000, sep = "_"), z = paste("test", 1:1000, sep = "."))
rbind(microbenchmark(tdt(DT, "y")),
microbenchmark(dcast(melt(DT, id.vars = "y"), variable ~ y)),
microbenchmark(DT[, data.table(t(.SD), keep.rownames=TRUE), .SDcols=-"y"]))
Unit: milliseconds
expr min lq mean median uq max neval cld
tdt(DT, "y") 3.463842 3.719341 4.308158 3.911599 4.576477 20.406940 100 a
dcast(melt(DT, id.vars = "y"), variable ~ y) 5.146119 5.496761 5.826647 5.580796 5.870584 9.536541 100 a
DT[, data.table(t(.SD), keep.rownames = TRUE), .SDcols = -"y"] 29.975567 34.554989 40.807036 36.724430 39.102396 104.242218 100 b
d <- tdt(DT, "y")
d[1:2, 1:11]
y name_1 name_2 name_3 name_4 name_5 name_6 name_7 name_8 name_9 name_10
1: x 1 2 3 4 5 6 7 8 9 10
2: z test.1 test.2 test.3 test.4 test.5 test.6 test.7 test.8 test.9 test.10
DT[1:10, 1:3]
x y z
1: 1 name_1 test.1
2: 2 name_2 test.2
3: 3 name_3 test.3
4: 4 name_4 test.4
5: 5 name_5 test.5
6: 6 name_6 test.6
7: 7 name_7 test.7
8: 8 name_8 test.8
9: 9 name_9 test.9
10: 10 name_10 test.10
class(d)
[1] "data.table" "data.frame"